Credit card payments helped track German E. coli O104 outbreak in sprouts

Why bother editing; it’s all below in this letter from the current issue of Emerging Infectious Diseases, Identifying risk factors for shiga toxin–producing Escherichia coli by payment information.

During May and June 2011, a large outbreak of hemolytic uremic syndrome (HUS) and diarrhea caused by Shiga toxin–producing Escherichia coli (STEC) occurred, centered on northern Germany (1,2). Early on, salads and raw vegetables were suspected to be food vehicles (3). Also in May, the staff department of a local company informed the Health Protection Authority in Frankfurt in southwestern Germany about the rapidly increasing number of patients with bloody diarrhea and HUS among employees at 2 company office sites. Both sites were served by cafeterias run by the same caterer. Main dishes were prepared in the cafeterias’ kitchens and differed between the 2 sites. However, in both cafeterias various fresh foods from a salad bar and fruits, desserts, and daily asparagus dishes originated from the caterer’s main kitchen. The salad bar included 30 items. Suspecting that this outbreak was linked to the one in northern Germany, we conducted an outbreak investigation to confirm the epidemiologic link to focus epidemiologic and traceback investigations.

A face-to-face survey among hospitalized employees and by email among all other employees was conducted, which included personal details, symptoms, and information about general food eaten at the cafeterias. We defined outbreak cases as infections in employees of the company at 1 of the 2 sites who by May 23, 2011, were either hospitalized with bloody diarrhea or HUS or who self-reported onset of bloody diarrhea from May 8 through May 23. A total of 320 persons responded to the survey, and 285 (89%) of 320 of the responders stated they used the cafeterias; 60 employees fulfilled our case definition. Case-patients’ median age was 33 years (range 22–60 years); 36 (60%) of 60 were female. Thirty case-patients were hospitalized; HUS developed in 18 (30%) (Figure A1). Disease onsets occurred over 9 days. Beginning and magnitude of the outbreak were not different between cafeteria locations. Bacteriologic diagnostics for 11 patients yielded results that are compatible with the outbreak strain (4).

We used billing data from the cafeterias’ obligatory cashless payment system to ascertain risk factors for disease. A nested case–control study design was chosen, limited to a fraction of the cohort to obtain rapid risk estimates. Exposures included were purchases of any fruit, salad bar item, dessert, or asparagus dish in either cafeteria from May 2 through May 13. On the basis of customer identification numbers, the caterer provided billing information for persons with early cases (n = 23). Controls were randomly chosen persons from the caterer’s database whose disease status was checked against the survey information (n = 30) and who did not report symptoms of diarrhea (nonbloody), vomiting, or nausea during the same period. Univariable logistic regression was performed.
In univariable analysis, salad bar purchases were highly associated with illness (odds ratio 5.19; 95% CI 1.28–21.03), and desserts, fruit, and asparagus dishes were not (Table). Three (9%) of the case-patients remained unexposed to salad bar items according to the payment system data. The analysis of main courses purchased in 1 cafeteria revealed that no such meal had been consumed by >5 (22%) of 23 case-patients. Beginning May 23, the cafeterias were closed for 1 week, and salad sales were suspended for a longer period. There were no additional cases.

These results and the identification of the same rare serotype of O104:H4 renders this a satellite outbreak to the larger outbreak in northern Germany, which is the largest outbreak in terms of HUS ever described worldwide. Sprouts are believed to be the food vehicle (5). Sprouts available in the Frankfurt cafeteria salad bars were traced back to a producer of fenugreek sprouts, which appear to be the common source of primary cases in the entire outbreak (5). Sprout consumption could not be studied directly in Frankfurt because of the intense media attention on the sprout hypothesis once it had been announced. Also, it was thought that too much time had passed to successfully recall actually selected salad bar items consumed a few weeks previous.

Cafeteria billing information allowed for a rapid investigation while avoiding exposure misclassification attributable to ill-remembered food purchases (6). Using data sources independent of individual memory is quite useful. In previous studies, similar tools were successfully applied for the detection of outbreak vehicles. Credit card information was used during an investigation on STEC in beef sausages in Denmark (7), supermarket purchase records for STEC in Iceland (8), and grocery store loyalty card records for cyclosporiasis in Canada (9). Shopper card information was used in the United States in an outbreak of Salmonella enterica serovar Montevideo (10). However, billing information also could have introduced exposure misclassification, e.g., purchased food that was left uneaten or brought for colleagues. Analysis on ingredient level is often not possible. This study emphasizes the need for recall-independent investigation methods. In settings where such methods are available, they should be exploited early and relevant data saved from routine deletion.

Hendrik Wilking , Udo Götsch, Helma Meier, Detlef Thiele, Mona Askar, Manuel Dehnert, Christina Frank, Angelika Fruth, Gérard Krause, Rita Prager, Klaus Stark, Boris Böddinghaus, Oswald Bellinger, and René Gottschalk
Author affiliations: Robert Koch Institute, Berlin, Germany (H. Wilking, M. Askar, M. Dehnert, C. Frank, G. Krause, K. Stark); Health Protection Authority, Frankfurt am Main, Germany (U. Götsch, B. Böddinghaus, O. Bellinger, R. Gottschalk); Veterinary Service, Frankfurt am Main (H. Meier, D. Thiele); Robert Koch Institute, Wernigerode, Germany (A. Fruth, R. Prager)

We are grateful to the caterer, the employees, and the company management for their cooperation. We thank each member of the Robert Koch Institute HUS Investigation Team for their indispensable work and the coordinators of the German Postgraduate Training for Applied Epidemiology and the European Programme for Intervention Epidemiology Training for their help.

Frank C, Werber D, Cramer J, Askar M, Faber M, an der Heiden M, Epidemic profile of Shiga-toxin–producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med. 2011;365:1771–80. DOI PubMed
Wadl M, Rieck T, Nachtnebel M, Greutélaers B, An der Heiden M, Altmann D, Enhanced surveillance during a large outbreak of bloody diarrhoea and haemolytic uraemic syndrome caused by Shiga toxin/verotoxin–producing Escherichia coli in Germany, May to June 2011. Euro Surveill. 2011;16:pii:19893.
Frank C, Faber M, Askar M, Bernard H, Fruth A, Gilsdorf A, Large and ongoing outbreak of haemolytic uraemic syndrome, Germany, May 2011. Euro Surveill. 2011;16:pii:19878.
Bielaszewska M, Mellmann A, Zhang W, Köck R, Fruth A, Bauwens A, Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis. 2011;11:671–6.PubMed
Buchholz U, Bernard H, Werber D, Böhmer MM, Remschmidt C, Wilking H, German outbreak of Escherichia coli O104:H4 associated with sprouts. N Engl J Med. 2011;365:1763–70. DOI PubMed
Decker MD, Booth AL, Dewey MJ, Fricker RS, Hutcheson RH, Schaffner W. Validity of food consumption histories in a foodborne outbreak investigation. Am J Epidemiol. 1986;124:859–63.PubMed
Ethelberg S, Smith B, Torpdahl M, Lisby M, Boel J, Jensen T, Outbreak of non-O157 Shiga toxin–producing Escherichia coli infection from consumption of beef sausage. Clin Infect Dis. 2009;48:e78–81. DOI PubMed
Sigmundsdottir G, Atladottir A, Hardardottir H, Gudmundsdottir E, Geirsdottir M, Briem H. STEC O157 outbreak in Iceland, September-October 2007. Euro Surveill. 2007;12(11):E071101.2.
Shah L, MacDougall L, Ellis A, Ong C, Shyng S, LeBlanc L. Challenges of investigating community outbreaks of cyclosporiasis, British Columbia, Canada. Emerg Infect Dis. 2009;15:1286–8. DOI PubMed
Centers for Disease Control and Prevention. Salmonella montevideo infections associated with salami products made with contaminated imported black and red pepper—United States, July 2009–April 2010. MMWR Morb Mortal Wkly Rep. 2010;59:1647–50.PubMed

Figure A1. Patients with Shiga toxin–producing Escherichia coli/hemolytic uremic syndrome (STEC/HUS) by onset of diarrhea and cafeteria visit (location A or B) during STEC/HUS outbreak at a company in Frankfurt, Germany,…
Table. Univariable analysis of risk factors for bloody diarrhea among users of 2 cafeterias in Frankfurt, Germany, 2011
Suggested citation for this article: Wilking H, Götsch U, Meier H, Thiele D, Askar M, Dehnert M, et al. Identifying risk factors for Shiga toxin–producing Escherichia coli by payment information [letter]. Emerg Infect Dis [serial on the Internet] 2012 Jan [date cited].
DOI: 10.3201/eid1801.111044

Could credit card receipts save children’s lives?

The Norwegian Institute of Public Health has confirmed a genetic match for an infection of E. coli O157 among three children who developed hemolytic uremic syndrome (HUS) this year.

The Institute reported this week,

“The first child became ill in January, the second in February and the third in March. In addition, a sibling of one of the children has also developed HUS, but it has not yet been confirmed whether this is the same bacterial strain.”

One of the four children—all of which are under the age of ten—has died.

The source of the outbreak has yet to be determined. County food safety officials are currently questioning the families of victims on the children’s meals and testing leftover food, while federal officials are seeking information on any further possible cases (i.e. persons, and particularly children, with bloody diarrhea who test positive for enterohemorrhagic E. coli).

I wonder if they’ve looked into the families’ grocery store receipts?

A peer-reviewed article in the April 15 issue of Clinical Infectious Diseases reports that the source of a 2007 outbreak of E. coli in Denmark was found using credit card information.

Investigators had struggled to determine the source of a strain of E. coli O26 that infected 20 Danish children between February and May of 2007.

Flesh and Stone reports that when interviews failed to yield any likely suspect foods, investigators turned to shopping lists.

“Parents in seven families provided their credit card information and a list of supermarkets where they had shopped. The two supermarket chains that the parents had used most often agreed to help with the investigation. The stores searched their central computers for the precise amount paid and the date and the location of the shop.

“From there, investigators determined that five families had purchased the same brand of fermented, organic beef sausage. A sixth family was linked to the same sausage brand through shopping records provided by the kindergarten attended by two children who became infected with the same E. coli strain, STEC O26. An unopened sample of the sausage also tested positive for the strain.”

Authors of the CID article acknowledged that relying on memory to identify similarities among the diets of outbreak victims diets is often unsuccessful and found credit card information to be “a strong tool in the [current] investigation.”

Investigation of a similar outbreak of E. coli O157 in Iceland successfully used the same method some months later. It could be worth a try for Norway.